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1. INTRODUCTION AND SUMMARY 

THE CONCEPT of a physical quantity, say A, and its dimension is 
taken to be known (see, e.g. [l], and also regarding the 
historical background [2]). Thus,given A and thefundamental 
quantities B,, B,, . , B, (e.g. mass, length, time, etc.), the 
dimension of A, denoted by [A], is a product of powers of the 
Bi (i = 1, 2, . , m): 

[A]=fllB”,...B”,“= ii&? (1) 
i=1 

Consequently, for a set ofphysical quantities A,, A,, . . , A, we 
have 

[Aj]=fi&‘J; j=l,Z ,..., n. (2) 
i=l 

A dimensionless group will then be a product of powers of Aj: 

Xc iA; (3) 

where the xj should be such that they solve the system oflinear 
equations 

i aijxj=O; i= 1,2 ,..., m. (4) 
j=l 

Since 

[X] = fi [AJ” = h ii &“Jx’ 
j=l j=li=l 

= fi ,fJ By’ = ,fp;, wj  = 1 

it is evident that X is ‘dimensionless’. (In what follows we 
simply say that X is a group.) 

An example. Let us consider in a fluid dynamical problem 
the following physical quantities: 

A, : tube diameter 
A, : linear velocity 
A, : fluid density 
A, : fluid viscosity 

as well as the fundamental quantities 

B, : mass 
B, : length 
B, : time. 

Now we have for (2) 

CA,] = B,, CA*] = &B;‘, CA31 = BIB;“, 
[AJ = B,B;‘B;’ (9 

and for (3), for example, 

X=A A A A-’ 1 z 3 4 (‘Reynolds number’) (6) 

where in fact, [X] = 1. Actually, (6) will be the only 
dimensionless group in the problem if groups corresponding 
to different powers of X are considered identical. 

Generally, however, the number of all (possible) groups in a 
given problem will be infinite. But it is enough to consider only 
linearly independent groups (see Section 3) of maximum 
number, a so-called base, since each group can then be 
represented as a unique linear combination of the particular 
groups in the respective base. However, the number of all bases 
becomes, as a rule, infinite. In the following, so-called simple 
groups will be defined, which are a finite collection of groups, 
the maximum number of linearly independent groups therein 
being unchanged. These ‘simple’ groups appear in a quite 
natural way in the search for all possible groups in a particular 
problem. A straightforward computer program to find all the 
simple groups in a set of physical quantities has been 
developed. 

Dimensional analysis as treated in this paper, is 
‘isomorphic’ to the formal stoicheiometry of chemical species 
and their reactions, as far as the linear algebraic aspect is 
concerned[3,4].The basicideagoes back to theearly 1960s [S, 
61. 

2. THE MATHEMATICAL PROBLEM 

2.1. The general solution of the system of homogeneous 
linear equations (4) is to be found. By introducing the 
m-dimensional column vectors 

a1 = [ail].. .., a, = [aa]; i = 1,2, .., m (7) 

equation (4) can be written in a more compact form : 

,il aIxj = O. (8) 
2. * 

As is well known, the general solution of equation (4) can be 
expressed as 

n-r 
x = c IkX, (9) 

b=I 

where r is the rank of the matrix of coefficients [aij], x is the 
solution vector: 

x = [x,, X2, . . ) XJ (10) 
and, further, x1, x1,. , x,_, are linearly independent 
particular solutions and A,, AZ,..., A,_, are arbitrary 
parameters (free variables). 

2.2. The representation (9) is evidently only one of the 
infinite number of possibilities. Next, a subset of all particular 
solutions, i.e. that of the so-called basic solutions, is defined. 
This happens in the following way. The system ofequations(8) 
is solved according to Cramer’s rule, i.e. a base 

{a,,, aj2, . , ajr} ; r = rank [aij] (11) 

is chosen and the following system ofequations is considered : 

a,,xj,+...+ajrx,,=ajk; k=r+l,..., n (12) 

xi, = 0; If 1,2, . . . . r, k (k being fixed). 

Obviously, the solution of the nonhomogeneous system (12), 
also called a basic solution, is unique. Moreover, by choosing 
different B,~ (k = r + 1, . , n) on the RHS of equation (12), a 



158 Technical Notes 

total of n - r linearly independent basic solutions are obtained 
[6]. The general solution of equation (4) can then be written in 
the form of equation (9). 

2.3. So far the base (11) has not been varied. What will 
happen if different bases are chosen and the corresponding 
basic solutions are sought? Evidently, the set of all basic 
solutions is thus obtained, which are no more linearly 
independent, however, the maximum number of linearly 
independent basic solutions remains n-r. 

Definition. A family of vectors is called a simplex if the 
vectors possess the following properties : (a) they are linearly 
dependent, and (b) omitting any one of them the rest forms a 
linearly independent system. 

Theorem [6]. Let us consider a simplex among the vectors 
(7) e.g. 

{pjl, q,, . . . . aj,l (P =S n, (13) 

and the respective system of equations 

a+,, +. .+q,xj, = 0 (14) 

XIt = O(I # 1,2, . . ., p). 

Let us call the solution of this system simple. If we now consider 
all the simple solutions, they turn out to be identical with the 
basic solutions defined in 2.2. 

3. SIMPLE GROUPS IN 
DIMENSIONAL ANALYSIS 

In order to make possible a mathematical treatment of the 
search for all (dimensionless) groups in a physical problem, the 
vectors (7) are introduced and a, is identified with the physical 
quantity A,; furthermore a group X among the physical 
quantities considered is identified with a solution x of equation 
(4). Naturally, (a) the trivial group (x = 0) is disregarded, and 
(b) two linearly dependent groups are considered identical. 
Further, the maximum number oflinearly independent groups 
becomes 

n-rank [aij]. (15) 

As a trivial example, let us again take (S), i.e. with B, : mass, 
B, : length and B, : time : 

A, A, A, 4 

[ai,] = 5: 
0 0 1 1 
1 1 -3 -1 ; rank [au] = 3. (16) 

B3 0 -1 0 -1 

According to (15) the solution of equation (4) is unique : 

x = [l, 1, 1, -l-jr, 

i.e. the only group(and the only simple group at the same time) 
becomes (6). 

Let us now extend the above example by adding to the 
physical quantities (5) two more, thereby obtaining the 
following list : 

A, : tube diameter 
A, : linear velocity 
A, : fluid density 
A4 : fluid viscosity 
A5 : acceleration due to gravity 
A, : pressure drop in the tube. 

For the system matrix in (4) we thus have: 

A, AZ A3 A, 4 A, 

001101 
[aJ = 5: 1 1 -3 -1 1 -l;rank[ai,]=3. (17) 

3 o-1 o-1-2-2 

The set of all simple groups can be obtained, according to 
the theorem (see Section 2). by determining all simplexes 
among the column vectors ofmatrix (17), see Fig. 1. Exactly the 
following eleven simplexes have been found (for, e.g. 
{A,, AZ, A,}, we simply write { 1,2,5}): 

{l, 2,s) ‘Froude’ . 1 
{2,3,6} ‘Euler’ 2 
i;p 2 2 ;/ ‘Reynolds’ 1:: 3 

{1:3:4:5} 
‘Poiseuille’ . . 4 
‘Galilei . 5 

!iy ;> $ zj ‘K&man’ 6 

i;: 4 $ fj 
‘Bernoulli 7 
‘d’Alembert’ 1:: 8 

{ 2: 4: 5: 6} 
‘Lagrange’ . 9 
‘Navier’ 10 

{ 374,576) ‘Laplace’ 11 

Only the names ‘Froude’, ‘Euler’, ‘Reynolds’ and ‘Galilei 
are used in the literature (for the respective groups, of course), 
the others being suggestions of the authors of this paper. The 
corresponding simple groups are the column vectors of the 
following matrix : 

cxI,...~x,Il 

x1 x* x3 x4 x5 X6 x7 X8 x9 Xl0 Xl, 

A, 10113211000 
AZ-2 2 l-l 0 0 0 0 3 1 0 
‘4, 01102110101 

=A4 0 O-l-l-2-2 O-2-1-1 2 (18) 

A, 1 0 0 0 1 0 l-l-l-l 2 
A, O-l 0 1 0 l-l 2 0 1 -3 

The maximum number of linearly independent groups is 
given by (16): 

rank [x1,x,, . , xl11 = n-rank [aij] = 3. (19) 

At this stage of the development one might enquire about 
the possible relations (more exactly, simple relations) between 
the groups considered in (18). In fact, the mathematics remains 
the same as was for the search of simple groups between 

The 11 Slmplexes 

x, .[A, .A~. ~~1 

X2 :[A,. Ax. A61 

~~~~ X3 :[A,.A,.A3.ALl 

XL [ A, A2. AL > A61 

X5 .I A, , A3. AL , A5 1 

X6 :[A, .A3.AL.A61 

X7 :[A, ,A3. As. A61 

X8 IA, , AL, As. A61 

xg ~IA,.A~.A,,A~~ 

X,o:lA2,AL,A5.A61 

--3 x,, [A:,.A,.A~.A~~ 

-Time 

FIG. 1. Space of simplexes. 
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physical quantities (the term ‘relation’ being used instead of 
speaking about ‘groups of groups’); e.g., one would find that 

x,x:x;’ = 1 

constitutes a simple relation. Once again, one could write 
down the set of all simple relations and continue with the 
hierarchy of groups, relations, and so on. However, this 
procedure seems to be a delicacy for the mathematically 
interested reader only. 

Finally, a remark about the boundaries of dimensional 
analysis is due. Taking a triplet oflinearly independent groups, 
see equation (18), e.g. {X,, X,, X,}, by dimensional analysis 
we only know that there is a functional relationship between 
the groups considered, say 

f(X,,X,,X,) = 0. 

Only further investigations (experimental or theoretical) can 
give more information about the actual form of this 
relationship. 
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APPENDIX: EXAMPLE FOR A GROUP 
THAT IS NOT SIMPLE 

A nonsimple group might be character&d in such a way 
that it can always be ‘simplified’, i.e. roughly speaking, by 
omittingsomeofthephysicalquantitiesoccurringinit, the rest 
will constitute a simple group ; e.g., in the former example, a 
nonsimple group is the following : 

X = AfA;‘A,‘A,A,. 

Check: x = [2, - 3,0, - 1, 1, l.lT is in fact a particular 
solution of equation (4) with (17). 

X can be simplified in several ways : 

(1) Deleting A,, the rest constitutes ‘Navier’. 
(2) Deleting A,, the rest constitutes ‘d’Alembert’. 
(3) Deleting A,, the rest constitutes ‘Poiseuille’. 
(4) Deleting A, and Ag, the rest constitutes ‘Froude’. 
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1. INTRODUCTION 

THIS PAPER describes an experimental and theoretical 
investigation of the heat transfer coefficient for a compressible, 
constant pressure, turbulent boundary layer on an isothermal 
flat plate. In the presence of large temperature differences 
between the freestream and the wall, the Nusselt number can 
be expected to depend on the ratio T,l?;,, due to 
compressibility effects and variations in gas properties with 
temperature through the boundary layer. At constant 
freestream Reynolds number, this is generally written in the 
form 

Nu = Nu,(T,/T,;,)“. 

There is a lack of experimental data in the literature, but 
reported analytical work for air tends to suggest a decrease in 
Nu with wall-to-gas temperature ratio. Kays and Crawford 
[1], for example, give a value for n of -0.4 for T,/T;, 7 1; 
Eckert’s reference temperature [2] corresponds to an 
exponent of -0.19 for the conditions investigated in this 
paper. Brown’s computations of flat plate heat transfer [3] 
also show a decrease of Nu with T,/rT;,, as do the turbulent 
heat transfer charts presented by Neal and Bertram [4]. Bose 
[S] solves the turbulent boundary-layer equations numeri- 
cally for 0.1 < TW/T,T;, < 0.9 and lists different St-Re 
correlations for the three temperature ratios which he 
considers. In all the cases described above, a negative value for 
the exponent n could be inferred. Previous experimental work 
at Oxford by Loftus and Jones [6] suggested that this effect 
was small. 

This paper examines the mechanisms for the dependence of 
Nusselt number on wall-to-gas temperature ratio. In addition, 
experimental results are presented for air at M = 0.55 and 
Re/m = 2.7 x 10’ m-t, for 0.5 c T,/7& < 1.3. This data is 
compared with numerical solutions of the turbulent, 
compressible boundary-layer equations using conventional 
mixing length turbulence models. 

2. ANALYTICAL DISCUSSION OF THE 
TEMPERATURE RATIO EFFECT 

Although the effect of the wall-to-gas temperature ratio is 
complicated, some understanding of possible mechanisms for 
producing such changes in the Nusselt number can be gained 
from a study of the laminar compressible boundary-layer 
equations, which for convenience can be considered in the 
simplified form 

p+(cpy = 0 

[(C/Pr)T’]‘+fT’+(y- l)Mz,CT,f”s = 0 1 
(1) 

with boundary conditions 

f(0) = f’(0) = 0, T(0) = T,, f’(m) = 1, T(W) = T, 

where 

’ = $, T = T(s), ‘I’ = &~m~co+mU-M, 

c = PPlPmP, 


